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Abstract: (1) Background: In children, SARS-CoV-2 infection is mostly accompanied by mild COVID-
19 symptoms. However, multisystem inflammatory syndrome (MIS-C) and long-term sequelae
are often severe complications. Therefore, the protection of the pediatric population against SARS-
CoV-2 with effective vaccines is particularly important. Here, we compare the humoral and cel-
lular immune responses elicited in children (n = 15, aged 5–11 years) vaccinated with the RBD-
based vaccines SOBERANA® 02 and SOBERANA® Plus combined in a heterologous scheme with
those from children (n = 10, aged 4–11 years) who recovered from mild symptomatic COVID-19.
(2) Methods: Blood samples were taken 14 days after the last dose for vaccinated children and
45–60 days after the infection diagnosis for COVID-19 recovered children. Anti-RBD IgG and ACE2-
RBD inhibition were assessed by ELISA; IgA, cytokines, and cytotoxic-related proteins were deter-
mined by multiplex assays. Total B and T cell subpopulations and IFN-γ release were measured
by multiparametric flow cytometry using a large panel of antibodies after in vitro stimulation with
S1 peptides. (3) Results: Significant higher levels of specific anti-RBD IgG and IgA and ACE2-RBD
inhibition capacity were found in vaccinated children in comparison to COVID-19 recovered children.
Th1-like and Th2-like CD4+ T cells were also significantly higher in vaccinated subjects. IFN-γ secre-
tion was higher in central memory CD4+ T cells of COVID-19 recovered children, but no differences
between both groups were found in the CD4+ and CD8+ T cell effector, terminal effector, and naïve T
cell subpopulations. In contrast to low levels of IL-4, high levels of IL-2, IL-6, IFN-γ, and IL-10 suggest
a predominant Th1 cell polarization. Cytotoxic-related proteins granzyme A and B, perforin, and gran-
ulin were also found in the supernatant after S1 stimulation in both vaccinated and recovered children.
(4) Conclusions: Vaccination with the heterologous scheme of SOBERANA® 02/SOBERANA®

Plus induces a stronger antibody and cellular immune response compared to natural infections in
young children.
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1. Introduction

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) was a global emergency, with more than 6 million deaths [1]. The pediatric
population develops mostly mild or moderate symptoms in SARS-CoV-2 infections, but
there is evidence of severe complications such as multisystem inflammatory syndrome
(MIS-C) and long-term sequelae (“long COVID”) [2–4]. Children also play an important
role in the transmission of the disease to other vulnerable groups, such as people over
65 years [5,6].

With more than 13 billion doses administrated so far, vaccination against COVID-19
in the adult population has been extended worldwide, but only 32.6% of the population
in low-income countries has received at least one vaccine dose [7]. Several vaccines have
been approved for children by local and global agencies; mRNA-based vaccines and virus-
inactivated vaccines have been the most applied in the pediatric population over 5 years
old [8–10]. Due to their safety and efficacy, vaccines based on protein subunits are very
attractive for childhood vaccination, as demonstrated through the millions of doses ad-
ministered against typical childhood infectious diseases like pneumonia or meningitis [11].
SOBERANA® 02 (based on the SARS-CoV-2 recombinant receptor-binding domain (RBD)
chemically conjugated to tetanus toxoid [12]) and SOBERANA® Plus (based on the recom-
binant RBD-dimer [13]) are two protein subunit vaccines against SARS-CoV-2 produced by
the Finlay Institute of Vaccines in Havana, Cuba. The heterologous combination of two
doses of SOBERANA® 02 followed by one dose of SOBERANA® Plus 28 days apart is safe,
immunogenic, and effective in adults 19–80 y/o [14–16] and in children 3–18 y/o [17]. This
scheme prevented COVID-19 disease in adults with an efficacy of 92% protection against
symptomatic disease [14].

A phase I/II clinical trial in 3–18 y/o children evaluated the humoral immune response
as well as the cytokine secretion induced by this heterologous scheme [17]. Here, we
characterize the humoral and cellular responses by measuring antigen-specific B and T cell
subpopulations in a subset of children vaccinated with the heterologous scheme during
the clinical trial, and we compare these responses with those in children recovered from
mild symptomatic COVID-19. This study introduces novel aspects of this RBD-based
vaccine combination in children, including specific IgA concentration, a titer of neutralizing
antibodies against the variants of concern (VOCs) Delta and Omicron BA.1, and frequencies
of specific memory B and effector CD4+ and CD8+ T cells.

2. Materials and Methods
2.1. Subjects and Ethics

A subgroup of children between 5 and 11 years (n = 15) were randomly selected from
participants in a phase I/II clinical trial conducted at the “Juan Manuel Marquez” Pediatric
Hospital in Havana, Cuba [17] (trial registry: https://rpcec.sld.cu/trials/RPCEC00000374-
En, accessed on 9 August 2023). They were vaccinated every 28 days with the heterologous
scheme of two doses of SOBERANA® 02 and a third dose with SOBERANA® Plus. The
study was conducted on October 2021 during the prevalence of the Delta variant and before
the appearance of the Omicron variant [18]. Key inclusion criteria were weight, height,
nutritional assessment, physical examination without alterations, clinical laboratory results
within the range of reference values, and microbiology laboratory tests. The key exclusion
criteria were any acute infection, a previous or current history of SARS-CoV-2 infection,
and being in contact with a positive COVID-19 case. Reverse transcriptase-polymerase
chain reaction (PCR) for SARS-CoV-2 detection was performed in all participants at least
72 h before each dose. A detailed description of the selection criteria has been described
previously [17].

Additionally, as a control for the immunity caused by SARS-CoV-2 natural infection,
10 children aged 4–11 y/o, who had suffered from mild symptomatic COVID-19 confirmed
by RT-PCR 45–60 days before blood draw, were recruited in a follow-up medical consulta-
tion for convalescent children at the hospital where the clinical trial was conducted. They

https://rpcec.sld.cu/trials/RPCEC00000374-En
https://rpcec.sld.cu/trials/RPCEC00000374-En
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were not participants in the clinical trial. They all were infected during the predominance of
the Delta variant. These subjects reported a single previous infection confirmed by RT-PCR
to SARS-CoV-2.

Their parents signed an informed consent to include their children in this study and
the results were communicated to them. The medical investigators provided the parents
with all the information about the vaccination and its potential risks and benefits.

2.2. Blood Collection and Isolation of Peripheral Blood Mononuclear Cells

Blood samples were taken 14 days after the last dose in vaccinated children, and
45–60 days after the infection diagnosis (by RT-PCR for SARS-CoV-2) for the control group
(children who had recovered from symptomatic mild COVID-19).

Blood samples were collected by venipuncture in a EDTA-K3 coated tubes Vacu-
tainer™ (Greiner Bio-One, Kremsmünster, Austria). Peripheral blood mononuclear cells
(PBMCs) were isolated by differential centrifugation in a gradient of Ficoll-Paque™ Plus
(GE-Healthcare, Uppsala, Sweden) following the manufacturer’s guidelines. Briefly, anti-
coagulated PBMCs were carefully layered over Ficoll and centrifuged at 400× g during
20 min at room temperature. The plasma fraction was removed for antibody determinations
and stored at −80 ◦C until use. The PBMC-rich layer was carefully removed, washed mul-
tiple times, centrifuged to remove platelets, and then stored in a cryopreservation medium
containing heat-inactivated fetal bovine serum (FBS, Gibco, Bleiswijk, The Netherlands)
and 10% DMSO (Sigma-Aldrich, St. Louis, MI, USA) in liquid nitrogen until use.

2.3. Antibody Determinations

Plasma samples were tested for an S-specific IgG response using the quantitative
electrochemiluminescence immunoassay Elecsys® Anti SARS-CoV-2 S test and the Cobas
e411 Analyzer (Roche Diagnostics, Mannhein, Germany) following the manufacturer’s
guidelines. The manufacturer specific U/mL of the Elecsys® Anti-SARS-CoV-2 S assay
can be considered equivalent to the Binding Arbitrary Units (BAU/mL) of the first WHO
International Standard for anti-SARS-CoV-2 immunoglobulin (NIBSC 20/136). The anti-
bodies’ capacity for blocking the RBD-hACE2 interaction was assessed with a competitive
ELISA [17]. RBD-specific IgA was determined in plasma using the bead-based multiplex
assay, LEGENDplex SARS-CoV-2 Serological IgA Panel (2-plex) Spike (S1) (Biolegend™,
San Diego, CA, USA) following the manufacturer’s instructions. Except for the conven-
tional viral neutralization assays, proteins with the Wuhan variant sequence were used.
The conventional virus neutralization test was assessed in a biosecurity laboratory level 3
(National Civil Defense Research Laboratory, Havana, Cuba) [17].

2.4. Staining of Cells and Multicolor Flow Cytometry

PBMCs were characterized by multiparametric flow cytometry for B and T cell sub-
populations. The FITC anti-human CD19 (HIB19, BD Pharmingen™, San Diego, CA,
USA), PE-Cy7 anti-human IgD (IA6-2, BioLegend™, San Diego, CA, USA), BV421 anti-
human CD27 (O323, BioLegend™), V500 anti-human CD45 (HI30, BD Horizon™, San
Diego, CA, USA), and BV605 anti-human CD3 (OKT3, BioLegend™) were used to iden-
tify total B cell populations. T helper polarization markers were assessed with an FITC
anti-human CD3 (SK7, BD Biosciences, San Diego, CA, USA), PE anti-human CD183
(CXCR3) (1C6/CXCR3, BD Pharmingen™), PE-Cy7 anti-human CD196 (CCR6) (G034E3,
BioLegend™), APC anti-human CD4 (RPA-T4, BD Pharmingen™), APC-H7 anti-human
CD8 (SK1, BD Pharmingen™), V500 anti-human CD45 (HI30, BD Horizon™), and BV605
anti-human CD194 (CCR4) (1G1, BD Biosciences) antibody cocktail. Representative gating
strategies are shown in Figures S1 and S2. No live/dead exclusion gate was present because
trypan blue staining was used for the exclusion of dead cells. The percentage of dead cells
was lower than 10%.

Specific B cell analysis was assessed with double tetramer staining using an RBD-
specific B cell kit (Miltenyi-Biotec, Bergisch Gladbach, Germany, 130-128-032), following
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the manufacturer’s instructions. Data were acquired on a MACSQuant16 Flow Cytometer
(Miltenyi-Biotec) and analyzed by FlowJo software X 10.0.7 (FlowJo LLC, Ashland, OR,
USA). Live singlets CD19+ lymphocytes were gated based on 7AAD fluorescence and
specific B cells. Cells incubated with streptavidin PE and PEVio770 alone were used as
negative controls. IgG+, IgM+, and IgA+ specific memory B cells were defined as CD27+

CD19+ on tetramer+ B cells.

2.5. IFN-γ Secretion Assay for an Evaluation of the T Cell Specific Response

PBMCs were thawed and their viability was determined after trypan blue staining
in a hemocytometer. Cells were adjusted to 1 × 107 cells/mL in X-Vivo 15 (Lonza, Basel,
Switzerland) supplemented with 1 mM of sodium pyruvate (Sigma-Aldrich), 1 mM of
L-glutamine (Sigma-Aldrich), and 1% of penicillin/streptomycin (Sigma-Aldrich), which
is then either left untreated or stimulated with 1 µg/mL of a SARS-CoV-2 S1 peptide
pool (PepTivator® SARS-CoV-2 Spike Protein Peptide Pool Miltenyi-Biotec) consisting
mainly of 15-mer sequences with 11 amino acids overlap, covering the immunodomi-
nant sequence domains of the spike glycoprotein (“S1”) of SARS-CoV-2) or left untreated.
After 16–18 h at 37 ◦C in 5% CO2, the culture supernatants were collected and stored at
−80 ◦C, whereas the cells were evaluated with an IFN-γ secretion kit assay (Miltenyi-Biotec)
designed for the detection and analysis of viable IFN-γ-secreting leukocytes, following
the manufacturer’s recommendations. Briefly, the cells were stained for 5 min on ice
with the anti-human IFN-γ capture antibody and incubated for 45 min at 37 ◦C under
slow continuous rotation followed by washing and staining with anti-human IFN-γ-APC
(Miltenyi-Biotec) for 10 min on ice. In order to dissect the cell populations secreting
IFN-γ and their activation and memory status, the cells were also stained with PE anti-
human CCR7 (150503, BD Pharmingen™), PerCP/Cy5.5 anti-human CD4 (RPA-T4, BioLe-
gend™), PE-Cy 7 anti-human CD45RA (HI100, BD Pharmingen™), APC-H7 anti-human
CD8 (SK1, BD Pharmingen™), V500 anti-human CD45 (HI30, BD Horizon™), and BV605
anti-human CD3 (OKT3, BioLegend™) antibodies. The cells were then acquired on an LSR
Fortessa Flow Cytometer (BD Biosciences) and the data were analyzed with FACS Diva
8.0 and FlowJo X 10.0.7 software (BD Biosciences). Representative gating strategies are
shown in Figure S3.

2.6. Determination of Cytokine Release

For the determination of the released cytokines, the supernatants of the cell cultures
stimulated with PepTivator Peptide Pools were analyzed using a LEGENDplex CD8/NK
cytokine-profile 13-plex kit (Biolegend) according to the manufacturer’s instructions. Cy-
tokine levels were normalized by removing the values from unstimulated controls. Data
were analyzed with the LEGENDplex v8.0 Software (Biolegend). The method has been
described in detail [19].

2.7. Statistics

The statistical analysis was performed using GraphPad Prism 9.0 (GraphPad Software,
San Diego, CA, USA). Data were described using geometric means and medians with
95% confidence intervals. Non-paired samples were analyzed with a non-parametric
Mann–Whitney test.

3. Results
3.1. Characterization of the Study Cohort

Children aged 4–11 years old who recovered from COVID-19 (n = 10) or were vacci-
nated with the heterologous scheme SOBERANA® 02/SOBERANA® Plus (n = 15) were
recruited in order to analyze in depth their humoral and cellular immune responses. Their
demographic characteristics are presented in Table 1. The study design is summarized
in Figure 1a.
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Table 1. Demographic characteristics of subjects included in the study.

Vaccinated Children Children Recovered from COVID-19

N 15 10

Sex
Female 6 (40.0%) 4 (40.0%)
Male 9 (60.0%) 6 (60.0%)

Skin color
White 12 (80.0%) 3 (30.0%)
Black 1 (6.6%) 1 (10.0%)

Multiracial 2 (12.3%) 6 (60.0%)

Age (years)
Mean (SD) 5.3 (2.1) 7.9 (2.9)

Median (IQR) 9.0 (6.0) 7.5 (5.0)
Range (5; 11) (4; 11)
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Figure 1. Spike specific antibody response in vaccinated and COVID-19 recovered children.
(a) Experimental design. Blood samples were collected from vaccinated children (n = 15) 14 days
after the last (third) dose of the SOBERANA® 02/SOBERANA® Plus heterologous scheme, and
from children (control, n = 10) who recovered from mild COVID-19 (45–60 days after the infection
diagnosis). (b) Spike IgG antibodies expressed in BAU/mL. (c) Concentration of anti-RBD IgA
antibodies in pg/mL. (d) Serum-induced inhibition of the RBD–hACE2 interaction. Mean ± SEM are
shown together with the p-values from the Mann–Whitney non-parametric t test.
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3.2. Antibody Immune Responses in Vaccinated Children Compared to COVID-19 Recovered Children

To characterize the antibody response, anti-spike IgG levels were determined with
an electrochemiluminescence assay calibrated with an international reference serum. The
children vaccinated with SOBERANA® 02/SOBERANA® Plus had higher IgG antibody
titers against RBD compared to COVID-19 convalescent children (Figure 1b, p < 0.0001).
In line with the anti-RBD IgG response, the levels of anti-RBD IgA were also higher in the
vaccinated group than after natural infection (Figure 1c, p < 0.0001).

We evaluated the neutralizing capacity of antibodies for blocking the binding of the
RBD to its receptor using a competitive immunoassay, which measures the percentage
of the inhibition of RBD–hACE2 interaction. As shown in Figure 1d, all the vaccinated
individuals performed better than the children who recovered from the disease (p < 0.0001).
The neutralizing titer against the variants D614G, Delta, and Omicron (BA.1) was also
evaluated by the conventional neutralization assay. Concerning the inhibition capacity
of the antibodies, the neutralizing titer in vaccinated children was higher than in the
COVID-19 recovered children (against D614G, p < 0.0001, against Delta, p = 0.0182, and
against Omicron (BA.1), p < 0.0001) (Figure 2).
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3.3. Total and RBD-Specific B Cells and T Helper Populations in Vaccinated and COVID-19
Recovered Children

In order to characterize the functional memory B cell response, we first analyze the
frequency of the total B cell subpopulations on PBMCs from vaccinated and COVID re-
covered children using multiparametric flow cytometry. The gating strategy is shown
in Figures S1 and S2. No significant differences were found between vaccinated and re-
covered children in the frequency of total naïve (IgD+CD27−), exhausted (IgD−CD27−),
and pre-switched B cells (IgD+CD27+), or switched memory plasmablast (CD24−CD38+)
(Figure S4A–E) and transitional naïve B cells (CD24+CD38+) (Figure S4F), but significant
higher levels (p = 0.0044) of switched memory B cells (IgD−CD27+) were found in vacci-
nated children (Figure S4D).

RBD-specific memory B cells were analyzed by flow cytometry with a double tetramer
staining (Figure 3a as representative). Compared to recovered children, in vaccinated
individuals, the total RBD-specific circulating CD19+ B cells were significantly higher
(p < 0.0001), as seen in Figure 3b. Further analyses of the specific CD27+ memory B cell
subsets show that in comparison with naturally infected controls, the frequencies of isotype
memory subpopulations IgG+CD27+ (p < 0.0001), IgM+CD27+ (p < 0.0260), and IgA+CD27+

B cells (p < 0.0001) meant that cells were significantly higher in vaccinated children, as
shown in Figure 3c.
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Figure 3. Analysis of B cell frequency in vaccinated and COVID-19 recovered children. (a) Repre-
sentative gate of RBD-specific B cells in recovered and vaccinated children. (b) Percentages of RBD 
tetramer+ on CD19+ B cells. (c) Percentages of IgG+CD27+, IgM+CD27+, and IgA+CD27+ on RBD+ B 
cells. Mean ± SEM are shown together with the p-values from the Mann–Whitney non-parametric t 
test. 
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(CD4+CXCR3+CCR6−, p < 0.0001) cells (Figure 4a) and Th2-like (CD4+CCR4+CCR6−, p = 
0.0007) cells (Figure 4b) showed a higher percentage of cells in vaccinated children. In 
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Figure 3. Analysis of B cell frequency in vaccinated and COVID-19 recovered children. (a) Representative
gate of RBD-specific B cells in recovered and vaccinated children. (b) Percentages of RBD tetramer+

on CD19+ B cells. (c) Percentages of IgG+CD27+, IgM+CD27+, and IgA+CD27+ on RBD+ B cells.
Mean ± SEM are shown together with the p-values from the Mann–Whitney non-parametric t test.

In addition, CD4+ T cell subpopulations were further characterized to compare the fre-
quencies of the different T helper cell polarization profiles. Th1-like (CD4+CXCR3+CCR6−,
p < 0.0001) cells (Figure 4a) and Th2-like (CD4+CCR4+CCR6−, p = 0.0007) cells (Figure 4b)
showed a higher percentage of cells in vaccinated children. In contrast, no statistically
significant differences were found in the Th17-like (CD4+CCR4+CCR6+) (Figure 4c) and
Th1/Th17-like subpopulations (CD4+CXCR3+CCR6+) between both groups (Figure 4d).

3.4. Functional Properties of T Cells after Antigen-Specific In Vitro Stimulation

To compare the effector properties of T cells induced by vaccination versus natural
infection, PBMCs were stimulated in vitro with the S1 peptide pool and then evaluated by
flow cytometry for IFN-γ release and the expression of T cell memory markers. Within the
CD4+ T cell populations, no statistical differences on IFN-γ release were found for naïve
effector memory (EM) and terminally differentiated effector memory (EMRA) between
vaccinated and COVID-19 recovered children. In contrast, in the central memory (CM)
CD4+ T cell subpopulation, a higher IFN-γ secretion (p = 0.0019) was detected in COVID-19
recovered children (Figure 5a).

The percentage of activated IFN-γ secreting CD8+ central memory (CM) and effector
memory (EM) T cells did not show a statistically significant difference (p > 0.05) between
vaccinated and COVID-19 recovered children. Nevertheless, the relative percent is higher
for CD8+ (CM) and CD8+ (EM) in the vaccinated individuals in comparison to recovered
children. The percentage of IFN-γ secreting CD8+ (EMRA) and CD8+ (naïve) cells did not
show statistical differences with controls (Figure 5b).
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Figure 4. Composition of the T helper cell subpopulation in vaccinated and COVID-19 recov-
ered children. PBMCs from vaccinated and recovered children (control) were isolated and stained
with antibody cocktails for CD4+ T cell subpopulations. The frequencies of Th1 CD4+ T cells
(CD4+CXCR3+CCR6−) are shown. (a) Th2 CD4+ T cells (CD4+CCR4+CCR6−), (b) Th17 CD4+ T cells
(CD4+CCR4+CCR6+), (c) Th1/Th17 cells (CD4+CXCR3+CCR6+), and (d) CD4+ T cells for individ-
ual children. The data are also shown as mean ± SEM and the p-values from the Mann–Whitney
non-parametric t test.

The overall cytokine profile produced in response to stimulation with the S1 peptide
pool was analyzed in the T cell culture supernatants using a multiplex assay. Higher
levels of IFN-γ, IL-2, IL-10, and IL-6, but not TNF-α, were found in vaccinated children in
comparison to recovered individuals (Figure 6a). The higher IFN-γ levels in vaccinated
children are consistent with the higher frequency of responding cells. In general, low levels
of IL-4 were found in both groups with values <10 pg/mL. No differences were detected
in IL-17A (Figure 5a). Furthermore, higher levels of the cytotoxicity-associated molecules
perforin, sFas/sFasL, granulysin, as well as granzyme A and B were detected in both
groups (Figure 6b).
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pool was analyzed in the T cell culture supernatants using a multiplex assay. Higher levels 
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Figure 5. Percentage of IFN-γ secreting CD4+ and CD8+ memory T cells in vaccinated and COVID-19
recovered children. PBMCs from convalescent and vaccinated children were left unstimulated or
were stimulated with S1 SARS-CoV-2 peptide pool, then the T cell-specific response was evaluated
as secretion of IFN-γ within the CD4+ (a) and CD8+ (b) T cell subpopulations with respect to their
memory phenotype. The bars show the mean ± SEM values and the p-values from the Mann–
Whitney non-parametric t test. N: naive; CM: central memory; EM: effector memory; EMRA: terminal
differentiated effector memory.
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vaccination scheme is characterized by high levels of anti-RBD antibodies with neutraliz-
ing capacity against VOCs (including BA.1) and IFN-γ secreting T cells [17]. These results 
supported the emergency use authorization and their use in a massive vaccination cam-
paign covering more than 96% of the pediatric population aged 2–18 years in Cuba [17,20]. 

Figure 6. Spike-specific cytokine secretion in vitro from vaccinated and COVID-19 recovered children.
PBMCs from convalescent and vaccinated children were stimulated with a S1 SARS-CoV-2 peptide
pool. Cell supernatants were analyzed using a multiplex cytokine secretion assay. (a) Cytokines;
(b) cytotoxicity-related molecules. Each dot identifies an individual child; the bars indicate
mean ± SEM and p-values from the Mann–Whitney non-parametric t test.

4. Discussion

After three years of the COVID-19 pandemic, vaccination against SARS-CoV-2 in pedi-
atric populations has not been extended worldwide. Two doses of SOBERANA® 02 in the
heterologous scheme with a third dose of SOBERANA® Plus has shown an excellent safety
profile and immunogenicity in children aged 3–18 years [17]. This heterologous vaccination
scheme is characterized by high levels of anti-RBD antibodies with neutralizing capacity
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against VOCs (including BA.1) and IFN-γ secreting T cells [17]. These results supported
the emergency use authorization and their use in a massive vaccination campaign covering
more than 96% of the pediatric population aged 2–18 years in Cuba [17,20].

The novelty of this study lies in the comprehensive characterization of SARS-CoV-2
specific humoral and cellular immune responses in children vaccinated with SOBERANA®

02 followed by SOBERANA® Plus compared with children who have recovered from
symptomatic COVID-19. The study also provides new evidence on the characterization of
the humoral response with respect to the previous findings [17].

Our study demonstrated a higher spike-specific IgG antibody response in vaccinated
compared to COVID-19 recovered children, as was found previously for adults vacci-
nated with the mRNA vaccine [21]. Also, this high level of spike-specific IgG antibodies
agrees with published responses in children and adolescents after different vaccination
schemes [22–24]. Since the humoral response can decay over time in recovered children and
adolescents [25,26], the need for a booster immunization in children post-natural infection
was suggested [13].

As IgA antibodies predominate in the acute phase of the COVID-19 disease [27],
serum RBD-specific IgA antibody levels were determined in vaccinated children and were
compared to the COVID-19 recovered group; vaccination induced higher RBD-specific
IgA concentrations.

The cellular response differs between vaccinated and recovered children. Previously,
we demonstrated that there were not significant changes in hematology analyses post this
vaccination [17]. In vaccinated children, there was a higher percentage of switched memory
B cells (CD19+CD27+IgD−) compared to convalescent children. No significant difference in
naïve, pre-switched, and exhausted B cells between both groups was found. Concerning an-
tibody concentration and total switched memory B cells, there were significant differences
between both groups in the RBD+ IgG, IgM, and IgA memory subpopulations, with higher
values after vaccination. These results significantly correlated with specific antibodies
of both isotypes. The association among antibodies, neutralizing capacity, and specific
circulating memory B cells have been previously described after infection and vaccination
with mRNA vaccines in children [24] and adults [28,29]. Also, it has been reported that the
compartment of the memory B cell remains elevated after vaccination with SARS-CoV-2
mRNA vaccines [30,31]. The proportion of circulating memory B cells are also in correspon-
dence with neutralizing antibodies against D614G and VOC, and this phenomenon was
described by Cinicola et al., 2022, after vaccination with the BNT162b2 vaccine in children
5–11 y/o [24]. It also has been shown that consecutive exposures to the SARS-CoV-2 spike
protein by vaccination increases the neutralizing capacity of antibodies, not only against
the Wuhan variant, but also against VOCs [32].

The high level of RBD-specific IgA antibodies and the detection of an IgA memory
B cell population suggest protection not only at a systemic level, also in the mucosal
compartment by the migration of these cells. This phenomenon has been documented after
vaccination with the BNT162b2 vaccine [33]. In addition, the role of the IgA antibodies
induced after the Omicron/BA.1 breakthrough infection in mRNA-vaccinated subjects
was demonstrated [34].

The generation of an immunological memory is the key for vaccine success. Both
memory B and T cells contribute to the maintenance of the immune response over time. In
this study, we found that both the RBD-specific antibody response and the relative percent-
age of the memory B cells increased in vaccinated individuals, suggesting a qualitative and
quantitative higher humoral immune response induced by vaccination with SOBERANA®

02/SOBERANA® Plus than after natural infection.
In addition to antibodies, both CD4+ T helper (Th) cells and CD8+ cytotoxic T lympho-

cyte (CTL)-specific responses are key factors against viral infections like COVID-19 [35].
Furthermore, each CD4+ Th cell subpopulation has different functions and their balance
is critical for the control of pathogen infections. We found a higher percentage of Th1
and Th2 CD4+ T cells in vaccinated children compared to convalescent individuals. This
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result is in accordance with previous findings after vaccination with SOBERANA® 02 and
SOBERANA® Plus in children in a phase I/II clinical trial, as determined by IFN-γ and IL-4
ELISpot assay [17]. Taken together, these results indicate a mixed post-vaccination response
that would have implications not only for the coordination of the T cell-mediated response,
especially of CTL, but also for the coordination of the humoral response necessary for viral
neutralization. Previous findings indicate that there is a strong correlation between the
CD4+ T-cell response and the neutralizing antibody response in adults [36,37] and conva-
lescent children [19,38,39]. In correspondence with this work, a decrease in the percentage
of CD4+ cells with a Th1 phenotype was detected in patients with COVID-19 [40], which
has been associated with a bad prognosis and resolution of the disease.

Previous studies showed that the CD8+ specific cytotoxic T cell response is critical in
the protection against SARS-CoV-2 infection [41]. To evaluate the functionality of these T
cell subpopulations, the IFN-γ release in different memory subpopulations was compared
after in vitro stimulation with S1 peptides. The analysis showed a predominant effector
memory phenotype in individuals vaccinated with the SOBERANA® 02/SOBERANA®

Plus scheme, which was comparable to results obtained after vaccination with mRNA-1273
and ChAdOx1 vaccines in children and adolescents [23]. These results are also in accordance
with previous data showing that COVID recovered children mostly exhibit a CD4+ and
CD8+ effector memory phenotype [42,43]. Thus, the heterologous scheme presented here is
comparable in terms of effector memory capacity to that of natural infection. Additionally,
we found high levels of IFN-γ in the supernatant of PBMC, which is in line with the high
percentage of activated memory T cells. Dowell et al. also reported that after mRNA-1273
and ChAdOx vaccination, children develop a Th1 response profile [23].

This study has some limitations, including the small number of participants, which
does not allow an age-related analysis. Also, we did not study viral neutralization for
Omicron variants such as BA.4/BA.5, XBB1.5, and others. Another limitation is that due to
the number of cells available, no positive controls were used in the IFN-γ secretion assays.

5. Conclusions

Our study provides new insights about RBD-specific IgA antibodies, characterizes the
phenotype of circulating B and T cells and the specific IFN-γ secretion of CD4+ and CD8+ T
cells after in vitro stimulation with S1 peptides induced by the heterologous SOBERANA®

02/SOBERANA® Plus scheme in children aged 5–11 years, and provides new evidence
of the T cells and memory responses in young children. As far as we know, this is the
first report of the deep characterization of the cellular immune response with protein
vaccines in young children. The heterologous scheme can induce a coordinated humoral
and cellular memory response against COVID-19 in the pediatric population, which is
qualitatively superior to the response generated by the natural infection. Taken together
with its safety profile, the heterologous SOBERANA® 02/SOBERANA® Plus scheme is an
excellent alternative for COVID-19 vaccination in children.
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tometry analysis of total B cell subpopulation; Figure S2. Gating strategies for flow cytometry analysis
of CD4 T helper subpopulation; Figure S3. Gating strategies for flow cytometry analysis of specific
IFN-γ secreting T memory cell in vitro responses; Figure S4. Distribution of B cell subpopulations in
vaccinated and COVID-19-recovered children.
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